Table des matières

Préface	vii
Auteurs et rédacteurs	ix
Leçon 1. Jean-Pierre Kahane. Le théorème de Pythagore, l'analyse	
multifractale et le mouvement brownien	1
Pythagore et son théorème	1
La courbe de Pólya, et l'analyse multifractale	5
Un autre aspect de la courbe de Pólya	11
Le mouvement brownien	13
Discussion	18
Bibliographie	25
Leçon 2. Pierre Cartier. L'intégrale de chemins de Feynman : d'une	
vue intuitive à un cadre rigoureux	27
Première partie : les intégrales de Daniell et de Wiener	27
L'intégrale de Daniell	27
Les chaînes de Markov	31
L'intégrale de Wiener	33
La notation de Feynman	37
Seconde partie : l'intégrale de Feynman	41
L'équation de la chaleur et l'intégrale de Wiener	41
La formule de Feynman-Kac	43
La mesure et l'intégrand, ou le mathématicien et le	
mécanicien	46
L'intégrale de chemins de Feynman	48
Un cadre axiomatique	53
Discussion	56
Bibliographie	58
Leçon 3. Vladimir I. Arnold. Nombres d'Euler, de Bernoulli et	
de Springer pour les groupes de Coxeter et les espaces de	
morsification: le calcul des serpents	61
Première partie : la suite classique d'Euler-Bernoulli	61
Le triangle d'Euler-Bernoulli	61
Le calcul des serpents	64

Morsification	68
Seconde partie : les nombres d'Euler-Bernoulli des groupes de	
Coxeter	76
Les groupes de Coxeter	76
Les nombres de Springer	79
Comment mettre les serpents dans les chambres	84
Le cas des autres groupes de Coxeter	89
Discussion	95
Bibliographie	96
Leçon 4. Don Zagier. Quelques conséquences surprenantes de la	a
cohomologie de $\operatorname{SL}_2(\mathbb{Z})$	99
Premier exemple : valeurs de $\zeta(2n)$	100
Deuxième exemple : fonction cotangente	102
Troisième exemple : fonctions thêta	103
Le groupe $\mathrm{SL}_2(\mathbb{Z})$ et sa cohomologie $\ \ldots \ \ldots \ \ldots \ \ldots$	104
Les « relations de périodes »	106
Formes modulaires	109
Périodes des formes modulaires	111
La fonction $C_{\tau}(X,Y;T)$ et les périodes $\ \ldots \ \ldots \ \ldots \ \ldots$	113
Fonctions zêta doubles	115
Les périodes des formes modulaires de Maass	119
Autres applications	121
Bibliographie	122
Leçon 5. Haïm Brézis. Tourbillons de Ginzburg-Landau, énergi	e
renormalisée et effets de quantification	125
Un problème impossible	125
L'énergie de Ginzburg-Landau et la question de Matano	129
Un analogue tridimensionnel	131
Retour à la dimension 2 : conversation avec un physicien	134
Solution du « problème impossible »	136
Première méthode de renormalisation	136
Autres méthodes de renormalisation : comment elles	
s'éclairent mutuellement	138
Un phénomène de quantification	140
Discussion	141
Bibliographie	143

Leçon 6. Bernard Malgrange. Monodromie, phase stationnaire e	t
polynôme de Bernstein-Sato	145
Introduction	145
Le polynôme de Bernstein-Sato	145
Monodromie	152
Premier ingrédient : homologie singulière	152
Deuxième ingrédient : la construction de Milnor	156
La définition de la monodromie. Le théorème de mono-	
dromie	158
« Idée » de la démonstration. Connexion de Gauss-Manin	162
Questions	168
Bibliographie	168
Leçon 7. John Coates. Courbes elliptiques	171
Les nombres congruents	171
Courbes elliptiques	174
Quelques séries formelles	177
Cohomologie de la courbe elliptique ${\rm E}_{\rm D}$	178
Arithmétique des courbes elliptiques	181
Le carré symétrique d'une courbe elliptique	183
Les fonctions L	188
Bibliographie	190
Leçon 8. Yves Meyer. Approximation par ondelettes et approxima	-
tion non-linéaire	193
Motivation	193
Compression/restauration	193
Débruitage	194
Exemple historique en dimension 1	195
Le point de vue de Peller	197
Signification du théorème de Peller	198
Définition des espaces de Besov. Analyse de Littlewood-	
Paley	198
Le contexte de la dimension 2	202
La généralisation du théorème de Peller par De Vore	205
Un problème d'actualité : la schématisation d'une image par	
un petit nombre de contours (Mumford-Shah, Blake,) .	211
Le théorème de Peller en dimension n	213
Les cadres L^2 et L^p	214

Theoreme de Yuri Netrusov pour l'algebre des bosses	216
Définition de l'espace BMO (Bounded mean oscillation) .	216
Définition de l'algèbre des bosses	216
Le débruitage optimal de David Donoho	217
Discussion	219
Appendice	219
Bibliographie	220
Leçon 9. Henry Helson. Et les séries de Fourier devinrent Analyse	e
harmonique	223
De Fréchet à Hartman	223
De Beurling à Kahane.	226
Angle entre le passé et le futur	233
Bibliographie	235
Leçon 10. Yves Colin de Verdière. Réseaux électriques planaires	237
Introduction	237
Première partie. Réseaux électriques généraux	238
Notations et définitions	238
Réponse du réseau électrique	240
Propriétés spéciales de la matrice L	241
Deuxième partie. Réseaux planaires	244
Les réseaux planaires et leurs réponses	244
Le problème inverse, le problème de l'équivalence	248
Transformations électriques élémentaires	249
Troisième partie. Grandes lignes de la preuve du théorème 2	252
La stratégie	252
Le graphe médial	257
Construction du graphe médial	258
Transformations électriques élémentaires sur le graphe	200
médial	260
Preuve de l'existence de chemins entre un graphe et un	200
graphe minimal	260
Preuve que la réponse impose la classe d'équivalence	
combinatoire	266
Graphes médiaux électriques	270
L'injectivité de Φ_{Γ_1}	272
Discussion	274
Bibliographie	276
Dionograpine	210

Leçon 11. Frédéric Pham. Caustiques : aspects géométriques	
et ondulatoires 27	7
Introduction	77
Premier exemple	77
Deuxième exemple	79
Première partie : aspect géométrique	79
Troisième exemple	30
Quatrième exemple	31
Enveloppes et généricité	31
Caustiques et catastrophes	37
Seconde partie : aspect ondulatoire	39
Le principe de Huygens-Fresnel	39
La géométrie et l'onde exacte) 4
Résurgence	98
Discussion)0
Bibliographie)3
Leçon 12. Pierre-Louis Lions. Problèmes mathématiques de la mé-	
canique des fluides compressibles 30	٦7
Introduction, modèles, historique	
Introduction	
Modèles	
Historique	
Remarques	
Euler	
De Leonhard Euler à Peter Lax	
Résultats pour $N = 1$	
Compacité par compensation	
Formulation cinétique	
Et les dimensions 2, 3,? Spéculations	
Équations de Navier-Stokes	
Généralités	
Perte de régularité	
Existence globale	
Compacité 32 Résumé et conclusion 33	
	v
	₹1
Questions	31 R1